Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=C23

Direct product G=NxQ with N=C3xDic3 and Q=C23
dρLabelID
Dic3xC22xC696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C3xDic3 and Q=C23
extensionφ:Q→Out NdρLabelID
(C3xDic3):1C23 = S32xD4φ: C23/C2C22 ⊆ Out C3xDic3248+(C3xDic3):1C2^3288,958
(C3xDic3):2C23 = C2xS3xC3:D4φ: C23/C2C22 ⊆ Out C3xDic348(C3xDic3):2C2^3288,976
(C3xDic3):3C23 = C2xDic3:D6φ: C23/C2C22 ⊆ Out C3xDic324(C3xDic3):3C2^3288,977
(C3xDic3):4C23 = C2xS3xD12φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3):4C2^3288,951
(C3xDic3):5C23 = C22xC3:D12φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3):5C2^3288,974
(C3xDic3):6C23 = S32xC2xC4φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3):6C2^3288,950
(C3xDic3):7C23 = C22xS3xDic3φ: C23/C22C2 ⊆ Out C3xDic396(C3xDic3):7C2^3288,969
(C3xDic3):8C23 = C22xC6.D6φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3):8C2^3288,972
(C3xDic3):9C23 = S3xC6xD4φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3):9C2^3288,992
(C3xDic3):10C23 = C2xC6xC3:D4φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3):10C2^3288,1002
(C3xDic3):11C23 = S3xC22xC12φ: trivial image96(C3xDic3):11C2^3288,989

Non-split extensions G=N.Q with N=C3xDic3 and Q=C23
extensionφ:Q→Out NdρLabelID
(C3xDic3).1C23 = C2xS3xDic6φ: C23/C2C22 ⊆ Out C3xDic396(C3xDic3).1C2^3288,942
(C3xDic3).2C23 = C2xD12:S3φ: C23/C2C22 ⊆ Out C3xDic348(C3xDic3).2C2^3288,944
(C3xDic3).3C23 = D12.33D6φ: C23/C2C22 ⊆ Out C3xDic3484(C3xDic3).3C2^3288,945
(C3xDic3).4C23 = D12.34D6φ: C23/C2C22 ⊆ Out C3xDic3484-(C3xDic3).4C2^3288,946
(C3xDic3).5C23 = C2xDic3.D6φ: C23/C2C22 ⊆ Out C3xDic348(C3xDic3).5C2^3288,947
(C3xDic3).6C23 = C2xD6.6D6φ: C23/C2C22 ⊆ Out C3xDic348(C3xDic3).6C2^3288,949
(C3xDic3).7C23 = S3xC4oD12φ: C23/C2C22 ⊆ Out C3xDic3484(C3xDic3).7C2^3288,953
(C3xDic3).8C23 = D12:23D6φ: C23/C2C22 ⊆ Out C3xDic3244(C3xDic3).8C2^3288,954
(C3xDic3).9C23 = D12:24D6φ: C23/C2C22 ⊆ Out C3xDic3484(C3xDic3).9C2^3288,955
(C3xDic3).10C23 = D12:27D6φ: C23/C2C22 ⊆ Out C3xDic3244+(C3xDic3).10C2^3288,956
(C3xDic3).11C23 = Dic6.24D6φ: C23/C2C22 ⊆ Out C3xDic3488-(C3xDic3).11C2^3288,957
(C3xDic3).12C23 = S3xD4:2S3φ: C23/C2C22 ⊆ Out C3xDic3488-(C3xDic3).12C2^3288,959
(C3xDic3).13C23 = Dic6:12D6φ: C23/C2C22 ⊆ Out C3xDic3248+(C3xDic3).13C2^3288,960
(C3xDic3).14C23 = D12:12D6φ: C23/C2C22 ⊆ Out C3xDic3488-(C3xDic3).14C2^3288,961
(C3xDic3).15C23 = D12.25D6φ: C23/C2C22 ⊆ Out C3xDic3488-(C3xDic3).15C2^3288,963
(C3xDic3).16C23 = Dic6.26D6φ: C23/C2C22 ⊆ Out C3xDic3488+(C3xDic3).16C2^3288,964
(C3xDic3).17C23 = S32xQ8φ: C23/C2C22 ⊆ Out C3xDic3488-(C3xDic3).17C2^3288,965
(C3xDic3).18C23 = C2xD6.4D6φ: C23/C2C22 ⊆ Out C3xDic348(C3xDic3).18C2^3288,971
(C3xDic3).19C23 = C32:2+ 1+4φ: C23/C2C22 ⊆ Out C3xDic3244(C3xDic3).19C2^3288,978
(C3xDic3).20C23 = C2xD6.D6φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3).20C2^3288,948
(C3xDic3).21C23 = D12:13D6φ: C23/C22C2 ⊆ Out C3xDic3248+(C3xDic3).21C2^3288,962
(C3xDic3).22C23 = D12:16D6φ: C23/C22C2 ⊆ Out C3xDic3488+(C3xDic3).22C2^3288,968
(C3xDic3).23C23 = C2xD6.3D6φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3).23C2^3288,970
(C3xDic3).24C23 = C22xC32:2Q8φ: C23/C22C2 ⊆ Out C3xDic396(C3xDic3).24C2^3288,975
(C3xDic3).25C23 = C2xD12:5S3φ: C23/C22C2 ⊆ Out C3xDic396(C3xDic3).25C2^3288,943
(C3xDic3).26C23 = S3xQ8:3S3φ: C23/C22C2 ⊆ Out C3xDic3488+(C3xDic3).26C2^3288,966
(C3xDic3).27C23 = D12:15D6φ: C23/C22C2 ⊆ Out C3xDic3488-(C3xDic3).27C2^3288,967
(C3xDic3).28C23 = C2xC6xDic6φ: C23/C22C2 ⊆ Out C3xDic396(C3xDic3).28C2^3288,988
(C3xDic3).29C23 = C6xC4oD12φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3).29C2^3288,991
(C3xDic3).30C23 = C6xD4:2S3φ: C23/C22C2 ⊆ Out C3xDic348(C3xDic3).30C2^3288,993
(C3xDic3).31C23 = C3xD4:6D6φ: C23/C22C2 ⊆ Out C3xDic3244(C3xDic3).31C2^3288,994
(C3xDic3).32C23 = S3xC6xQ8φ: C23/C22C2 ⊆ Out C3xDic396(C3xDic3).32C2^3288,995
(C3xDic3).33C23 = C3xQ8.15D6φ: C23/C22C2 ⊆ Out C3xDic3484(C3xDic3).33C2^3288,997
(C3xDic3).34C23 = C3xS3xC4oD4φ: C23/C22C2 ⊆ Out C3xDic3484(C3xDic3).34C2^3288,998
(C3xDic3).35C23 = C3xD4oD12φ: C23/C22C2 ⊆ Out C3xDic3484(C3xDic3).35C2^3288,999
(C3xDic3).36C23 = C3xQ8oD12φ: C23/C22C2 ⊆ Out C3xDic3484(C3xDic3).36C2^3288,1000
(C3xDic3).37C23 = C6xQ8:3S3φ: trivial image96(C3xDic3).37C2^3288,996

׿
x
:
Z
F
o
wr
Q
<