extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xDic3).1C23 = C2xS3xDic6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 96 | | (C3xDic3).1C2^3 | 288,942 |
(C3xDic3).2C23 = C2xD12:S3 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | | (C3xDic3).2C2^3 | 288,944 |
(C3xDic3).3C23 = D12.33D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).3C2^3 | 288,945 |
(C3xDic3).4C23 = D12.34D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 4- | (C3xDic3).4C2^3 | 288,946 |
(C3xDic3).5C23 = C2xDic3.D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | | (C3xDic3).5C2^3 | 288,947 |
(C3xDic3).6C23 = C2xD6.6D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | | (C3xDic3).6C2^3 | 288,949 |
(C3xDic3).7C23 = S3xC4oD12 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).7C2^3 | 288,953 |
(C3xDic3).8C23 = D12:23D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 24 | 4 | (C3xDic3).8C2^3 | 288,954 |
(C3xDic3).9C23 = D12:24D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).9C2^3 | 288,955 |
(C3xDic3).10C23 = D12:27D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 24 | 4+ | (C3xDic3).10C2^3 | 288,956 |
(C3xDic3).11C23 = Dic6.24D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 8- | (C3xDic3).11C2^3 | 288,957 |
(C3xDic3).12C23 = S3xD4:2S3 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 8- | (C3xDic3).12C2^3 | 288,959 |
(C3xDic3).13C23 = Dic6:12D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 24 | 8+ | (C3xDic3).13C2^3 | 288,960 |
(C3xDic3).14C23 = D12:12D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 8- | (C3xDic3).14C2^3 | 288,961 |
(C3xDic3).15C23 = D12.25D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 8- | (C3xDic3).15C2^3 | 288,963 |
(C3xDic3).16C23 = Dic6.26D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 8+ | (C3xDic3).16C2^3 | 288,964 |
(C3xDic3).17C23 = S32xQ8 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | 8- | (C3xDic3).17C2^3 | 288,965 |
(C3xDic3).18C23 = C2xD6.4D6 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 48 | | (C3xDic3).18C2^3 | 288,971 |
(C3xDic3).19C23 = C32:2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C3xDic3 | 24 | 4 | (C3xDic3).19C2^3 | 288,978 |
(C3xDic3).20C23 = C2xD6.D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | | (C3xDic3).20C2^3 | 288,948 |
(C3xDic3).21C23 = D12:13D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 24 | 8+ | (C3xDic3).21C2^3 | 288,962 |
(C3xDic3).22C23 = D12:16D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 8+ | (C3xDic3).22C2^3 | 288,968 |
(C3xDic3).23C23 = C2xD6.3D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | | (C3xDic3).23C2^3 | 288,970 |
(C3xDic3).24C23 = C22xC32:2Q8 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 96 | | (C3xDic3).24C2^3 | 288,975 |
(C3xDic3).25C23 = C2xD12:5S3 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 96 | | (C3xDic3).25C2^3 | 288,943 |
(C3xDic3).26C23 = S3xQ8:3S3 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 8+ | (C3xDic3).26C2^3 | 288,966 |
(C3xDic3).27C23 = D12:15D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 8- | (C3xDic3).27C2^3 | 288,967 |
(C3xDic3).28C23 = C2xC6xDic6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 96 | | (C3xDic3).28C2^3 | 288,988 |
(C3xDic3).29C23 = C6xC4oD12 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | | (C3xDic3).29C2^3 | 288,991 |
(C3xDic3).30C23 = C6xD4:2S3 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | | (C3xDic3).30C2^3 | 288,993 |
(C3xDic3).31C23 = C3xD4:6D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 24 | 4 | (C3xDic3).31C2^3 | 288,994 |
(C3xDic3).32C23 = S3xC6xQ8 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 96 | | (C3xDic3).32C2^3 | 288,995 |
(C3xDic3).33C23 = C3xQ8.15D6 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).33C2^3 | 288,997 |
(C3xDic3).34C23 = C3xS3xC4oD4 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).34C2^3 | 288,998 |
(C3xDic3).35C23 = C3xD4oD12 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).35C2^3 | 288,999 |
(C3xDic3).36C23 = C3xQ8oD12 | φ: C23/C22 → C2 ⊆ Out C3xDic3 | 48 | 4 | (C3xDic3).36C2^3 | 288,1000 |
(C3xDic3).37C23 = C6xQ8:3S3 | φ: trivial image | 96 | | (C3xDic3).37C2^3 | 288,996 |